Symplectic Geometry

Homework 7

Exercise 1. (10 points)
Consider a trivial bundle $E=X \times \mathbb{R}^{m} \xrightarrow{\pi} X$ over an n-dimensional manifold X. Let N_{E} be the fiber conormal bundle, i.e. the space of points (e, η) of $T^{*} E$ such that η vanishes on the kernel of $\left.d \pi\right|_{e}$. As shown in the lecture, in this case $N_{E}=T^{*} X \times \mathbb{R}^{m} \times\{0\} \subset T^{*} X \times T^{*}\left(\mathbb{R}^{m}\right)=T^{*}\left(X \times \mathbb{R}^{m}\right)$.
(a) Prove that N_{E} is a coisotropic submanifold of $T^{*} E$ (equipped with the canonical symplectic structure of a cotangent bundle).

Recall the coisotropic reduction of symplectic vector spaces. Note that the derivative (push forward) of the natural projection $p r: N_{E} \rightarrow T^{*} X$, at $(e, \eta) \in N_{E}$, is the coisotropic reduction $\operatorname{map} T_{(e, \eta)} N_{E} \rightarrow T_{(e, \eta)} N_{E} /\left(T_{(e, \eta)} N_{E}\right)^{\omega}$. Therefore $T^{*} X$ is called a coisotropic reduction of $T^{*} E$ with respect to N_{E}.
(b) Given $f: X \times \mathbb{R}^{m} \rightarrow \mathbb{R}$, what is the coisotropic reduction of the graph of $d f$ with respect to N_{E}, i.e. what is $\operatorname{pr}\left(N_{E} \cap(\operatorname{graph} d f)\right)$?

Exercise 2. (10 points)
Prove that if $L_{1} \subset T^{*} B_{1}$ has generating function $F_{1}: B_{1} \times \mathbb{R}^{N_{1}} \rightarrow \mathbb{R}$ and $L_{2} \subset T^{*} B_{2}$ has generating function $F_{2}: B_{2} \times \mathbb{R}^{N_{2}} \rightarrow \mathbb{R}$ then $L_{1} \times L_{2} \subset T^{*} B_{1} \times T^{*} B_{2} \equiv T^{*}\left(B_{1} \times B_{2}\right)$ has generating function $F_{1} \oplus F_{2}:\left(B_{1} \times B_{2}\right) \times\left(\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}\right) \rightarrow \mathbb{R}$.
(The notation $F_{1} \oplus F_{2}$ means that $F_{1} \oplus F_{2}\left(b_{1}, v_{1}, b_{2}, v_{2}\right)=F_{1}\left(b_{1}, v_{1}\right)+F_{2}\left(b_{2}, v_{2}\right)$. The base variable is $\left(b_{1}, b_{2}\right) \in B_{1} \times B_{2}$, and the fiber is $\left(\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}\right)$.)

Exercise 3. ($10+10$ points)
Exercises 1 and 3 from Homework 6 (on page 50) in Lectures on Symplectic Geometry by A. Cannas da Silva. Also available online at: http://www.mi.uni-koeln.de/~pabiniak/sg.html

Bonus Exercise. (10 points)
Suppose that $L \subset T^{*} B$ has generating function $F: B \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, and $A_{h}: T^{*} B \rightarrow T^{*} B$ is a symplectomorphism of the form $A_{h}(b, v)=(b, v)+\left(b, d h_{\mid b}\right)$ for some function $h: B \rightarrow \mathbb{R}$. Prove that the function $F+h: B \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, defined by $(F+h)(b, v)=F(b, v)+h(b)$, is a generating function for $A_{h}(L) \subset T^{*} B$.

Bonus Exercise. (10 points)
Prove that if a Lagrangian submanifold L of $T^{*}\left(\mathbb{R}^{2 n} \times \mathbb{R}^{2 m}\right)$ has generating function $F:\left(\mathbb{R}^{2 n} \times\right.$ $\left.\mathbb{R}^{2 m}\right) \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ then the reduction $\bar{L} \subset T^{*} \mathbb{R}^{2 n}$ of L with respect to the coisotropic submanifold $V=\mathbb{R}^{2 n} \times \mathbb{R}^{2 m} \times\left(\mathbb{R}^{2 n}\right)^{*} \times\{0\}$ of $T^{*}\left(\mathbb{R}^{2 n} \times \mathbb{R}^{2 m}\right)$ has a generating function $\bar{F}: \mathbb{R}^{2 n} \times\left(\mathbb{R}^{2 m} \times \mathbb{R}^{N}\right) \rightarrow$ $\mathbb{R}, \bar{F}(u ; v, \zeta)=F(u, v ; \zeta)$. (Note that the only difference between F and \bar{F} is in the splitting of the domain into base and fiber. Parentheses and signs ; separate base variable from fiber variable.)

